If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+14x-127=0
a = 1; b = 14; c = -127;
Δ = b2-4ac
Δ = 142-4·1·(-127)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-8\sqrt{11}}{2*1}=\frac{-14-8\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+8\sqrt{11}}{2*1}=\frac{-14+8\sqrt{11}}{2} $
| -94+13x=-237 | | 2y+35=5 | | -8d+5=-9d-4 | | 3-y=8(y-3) | | -g-7=-8g | | 8z-3=7+9z | | 35+2b=-5b+11 | | -7k=-3k-4 | | -2m=-10-m | | 6h=-3+9h | | 3x^2+18x-77=0 | | 6x^2-4=-44 | | 3m+16=7m-4 | | 4(3x+8)=-11+31 | | 3(2x-6)=-41 | | 7xx=4 | | 2x(x-15)^2-x^2(x-15)=0 | | p2-19p+84=0 | | √d=10 | | 3m+5=3m-5 | | 9x+25=50 | | 5/3x=6/2 | | x+0.2x=19000 | | 9b-10=2(3b÷ | | 4n+n=3 | | 12(7-2v)+5v=-69 | | -17=1/3(9y+23 | | 3/y-48=-12 | | 2(4x1)=16 | | 4.8=3t | | s+11.2S=0.98 | | 9v+3v=36 |